La fórmula general para resolver ecuaciones de segundo grado contiene un radicando conocido como discriminante cuyo valor nos permite saber el tipo de raíces que satisfacen la ecuación.
Recordando la ecuación general para resolver ecuaciones de segundo grado ( ax2+bx+c=0) tenemos:
El discriminante de la ecuación es y se tienen las siguientes condiciones para determinar el tipo de raíces que obtendremos:
- Si se obtienen dos raíces reales y diferentes
- Si se obtienen dos raíces reales e iguales
- Si se obtienen dos raíces complejas y diferentes
En los siguientes ejemplos se usa el discriminante para determinar el tipo de raíces que satisfacen la ecuación:
Ejemplo 1:
5x2+x-10=0
Solución:
Identificamos los coeficientes:
a=5, b=1 y c=-10
Ahora, sustituimos los valores en el discriminante :
Entonces, tenemos dos raíces reales y diferentes:
Ejemplo 2:
x2 + x – 2 = 0
Solución:
Identificamos los coeficientes:
a = 1, b = 1 y c = -2
Sustituimos los valores en el discriminante :
Tenemos dos raíces reales y diferentes:
Ejemplo 3:
x2 + x – 12 = 0
Solución:
Identificamos los coeficientes:
a = 1, b = 1 y c = -12
Sustituimos los valores en el discriminante :
Tenemos dos raíces reales y diferentes:
Ejemplo 4:
4x2 + 4x + 1 = 0
Solución:
Identificamos los coeficientes:
a = 4, b = 4 y c = 1
Sustituimos los valores en el discriminante :
Entonces, las raíces que satisfacen la ecuación son reales e iguales:
Ejemplo 5:
x2 + 6x + 9 = 0
Solución:
Identificamos los coeficientes:
a = 1, b = 6 y c = 9
Sustituimos los valores en el discriminante :
Las raíces que satisfacen la ecuación son reales e iguales:
Ejemplo 6:
x2 – 2x + 1 = 0
Solución:
Identificamos los coeficientes:
a = 1, b = -2 y c = 1
Sustituimos los valores en el discriminante :
Por lo tanto, las raíces que satisfacen la ecuación son reales e iguales:
Ejemplo 7:
x2 + x + 1 = 0
Solución:
Identificamos los coeficientes:
a = 1, b = 1 y c = 1
Sustituimos los valores en el discriminante :
Entonces, las raíces que satisfacen la ecuación son complejas y diferentes:
Ejemplo 8:
2x2 + 3x + 2 = 0
Solución:
Identificamos los coeficientes:
a = 2, b = 3 y c = 2
Sustituimos los valores en el discriminante :
Por lo tanto, las raíces que satisfacen la ecuación son complejas y diferentes:
Ejemplo 9:
2x2 – 4x + 3= 0
Solución:
Identificamos los coeficientes:
a = 2, b = -4 y c = 3
Sustituimos los valores en el discriminante :
Las raíces que satisfacen la ecuación son complejas y diferentes:
Ejemplo 10:
2x2 +3x – 5 = 0
Solución:
Identificamos los coeficientes:
a = 2, b = 3 y c = -5
Sustituimos los valores en el discriminante :
Las raíces que satisfacen la ecuación son reales y diferentes: